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Point groups and space groups in 3-D are two classes of symmetry groups that have proved most 
useful in crystallography. Recently other sorts of groups have been described involving a change 
of 'side', sign (antisymmetry), or color; and some of these have already been applied to problems 
of twinning and magnetic structures. A uniform classification of these various groups should help 
in visualizing the relations among them and in working out new applications. 

If all variables are treated geometrically, including antisymmetry, symmetry groups may be 
classed according to the dimensions of space that are invariant under their operations. Thus the 
80 'antisymmetry groups in a plane' have 2-D and 3-D spaces invariant. The group is 'in' the 
highest dimensional space of invariance, and translations are allowed only in the lowest dimensional 
space. But spaces of intermediate dimensions may also be invariant: the 31 'Streifenornamente' have 
l, 2, 3 spaces invariant. Alternatively these classes may be described by the symmetry of the in- 
variant space, using the continuous translations and rotations. Thus the class of groups in 2, 3 space 
are all the crystallographic subgroups of too/mm, and class l, 2, 3 are all subgroups of tmmm. 

All such classes through 4-D are tabulated. 

Introduction 

After  the classical descriptions of crystallographic 
lattices and  space groups in the nineteenth century,  
it  was general ly considered t ha t  everything had been 
said on the subject. There was a revival  of interest  
about 1930 when several papers appeared in the 
Zeitschrift f i ir  Kristallographie describing line groups, 
plane groups, three-dimensional groups in four dimen- 
sions, continuous groups, and so on. These esoteric 
mat te r s  were soon forgotten,  but  ever since the ap- 
pearance in 1951 of Schubnikov 's  book on anti-  
symmetr ic  point  groups, the  field has blossomed. 
An t i symmet ry  is a beautiful ly simple idea t h a t  has 
moreover  proved useful in solving magnet ic  s t ructures  
and other  problems. S y m m e t r y  groups are now gener- 
ally classified in terms of an t i symmet ry  or extensions 

of t h a t  idea (Zamorzaev & Sokolov, 1957; Mackay,  
1957; Niggli, 1959; :Nowacki, 1960). I t  is the  single 
purpose of this paper  to recall and develop another  
aspect of symmet ry  groups t h a t  can serve as a basis 
of classification. I refer to the space---point, plane, line, 
cell, or some combination of t h e m - - t h a t  is invar iant  
under  all operations of the symmet ry  groups in a class. 
The dimensions of the space, or its general symmet ry ,  
is a description of the class of groups. Wi th  this 
a l ternate  viewpoint,  groups are more easily described 
for some purposes. 

Antisymmetry  and dimensions 

I take as point of departure the paper by Heeseh 
(1930a), 'l~ber die vierdimensionalen Gruppen des 
dreidimensionalen Raumes'. These groups are in fact 
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the an t i symmetr ic  or black and white groups in 3-D, 
now general ly known as the Schubnikov groups. 
A point  can be described in 3-D by  the coordinates 
x, y, z; then  whereas Heesch gives it values of plus or 
minus  w in a fourth dimension, Schubnikov and Belov 
label it black or white.* An t i symmet ry  is equivalent  
to a bivalued funct ion in an added dimension. How 
far, and to what  purpose, can this aspect of groups 
be developed ? 

Dimensional  classification of s y m m e t r y  g r o u p s  

The dimensional  relations of symmet ry  groups are most 
easily appreciated in few dimensions. The 80 anti- 
symmetr ic  plane groups (Belov, Nerenova & Smir- 
nova, 1955; Mackay, 1957, p. 544) can also be called 
2-D (plane)groups in three dimensions (Heesch, 1930a, 
p. 326). Niggli (1959, p. 300) lists them both ways:  
(1) as 80 symmet ry  groups with 2-D t ransla t ion in 
3-D space (Schichtgruppen G~) and (2) as 46 anti- 
symmet ry  groups wi th  2-D t ransla t ion in 2-D space 
(G~') (plus 17 'black'  or one-sided groups, and 17 
'gray '  or mirrored groups, equals 80). He apparen t ly  
does not  th ink  it necessary to point  out this  equiv- 
alence (or two other similar  equivalences) tha t  occur 
in his table. 

I t  is impor tan t  to remember  tha t  points anywhere  
in 3-D space, however far they  m a y  be from the 
reference plane, can be related by  these 80 2-D groups. 
The reference plane imposes only two restrictions: 
(1) i t  is the locus of all translations,  and (2) it is in- 
var ian t  under  all rotat ions and reflections. The first 
of these is used by Niggli (1959) as a basis for his 
classification. But  there can be more than  one class 
of groups with the same t rans la t ional  elements. 
Consider the groups with t ransla t ion along only a 
single reference line. If  points only on the line are 
allowed, there are two such groups (International 
Tables for X-ray Crystallography, Vol. I, p. 45). If 
points are also allowed in a plane (that contains the 
line), i t  is well known tha t  there are 7 such groups 
(International Tables for X-ray Crystallography, Vol. I, 
p. 56). Now if we retain the reference line and plane, 
and allow points anywhere  in 3-D space, 31 symmet ry  
groups are possible. Speiser first described these as 
'Streifenornamente ' ,  in terms of the symmet ry  of a 
strip ornament  tha t  has relief (Speiser, 1956, p. 81-86). 
On the other hand,  these are also an t i symmet ry  groups 
with 1-D t ransla t ion in 2-D space (Belov, 1956, p. 475 ; 
Niggli, 1959" 17G½-' groups, plus 7 'black'  and 7 'gray'  
groups equals 31). But  when we consider the point  
groups (I count 16) tha t  are isomorphous with these 
31 groups, we f ind they  have no place in the classifica- 
tions of Niggli or Mackay (1957). Similar troubles will 
be found with the groups involving 2-D translations.  

However, these classes of groups are dis t inguished 
in a s t raightforward manner  by  the second restriction 
tha t  was ment ioned above, tha t  is, in terms of the line 
or plane tha t  is invar ian t  under  rotations and reflec- 
tions. By  invar iance I mean tha t  any  s y m m e t r y  
operation of the group acts on the line or plane to give 
it  back unchanged.  Actual ly  both restrictions can be 
s tated in these terms, when you realize tha t  if a p lane  
is the locus of all translations,  it  is invar ian t  with such 
translations.  So both restrictions can be combined by  
saying tha t  the plane or line is invar ian t  under  all 
symmet ry  operations of tha t  class of groups. Then if 
several dimensional  descriptions are involved, such as 
a plane and a line in the 7 groups ment ioned above, 
t ranslat ion is necessarily restricted to the lowest 
dimension of invariance (l-D). Analogously, point  
groups have zero as their  lowest dimension. Fur ther-  
more, if a group is ' in '  2-D space, 2-D space must  be 
invar ian t  with respect to tha t  group. This is the 
highest dimension of invariance.  From this viewpoint  
all  the classes of groups ment ioned in the preceding 
paragraph m a y  be designated in terms of thei r  
dimensional  invar iance:  80 groups of class 2, 3; 2 
groups of class 1; 7 groups of class 1, 2; 31 groups of 
class 1, 2, 3; and 16 groups of class 0, 1, 2, 3. 

The c]asses of groups up to 3-]3 are l isted in Table 1 
according to this  'dimensional '  description. In  the  
second and th i rd  columns of Fig. 1 these dimensions 
are represented graphically.  All the dimensions listed 
are invar ian t  with respect to any  group in tha t  class; 
the group lies in the space of highest  dimension,  
and  has t ransla t ion along the lowest dimension.* If  
desired, the list of dimensions m a y  be considered a 
symbol  of the class of groups. Please unders tand  tha t  
Fig. 1 is schematic,  and while the boundaries of each 
space have been drawn to conform with its symmet ry  
(see below), the space in which symmet ry  m a y  operate 
ac tual ly  extends inf ini te ly  in one or more directions. 
The equivalence of classes 0, 1, 3 and  0, 2, 3 will be 
discussed in the following section. 

This sort of description has perhaps some advan tage  
of being ma themat i ca l ly  consistent and explicit,  in 
recognizing tha t  all coordinates of a point  can be 
expressed geometrically. Any  of these dimensions m a y  
or m a y  not  correspond to dimensions of real space. 
Where all the  dimensions do correspond to real space, 
as in the applicat ion to twinning theory, of groups of 
kinds 2, 3, and 0, 2, 3 (Holser, 1957) and l ,  2, 3, and  
0, 1, 2, 3 (Holser, 1960), the full dimensional  descrip- 
t ion has obvious advantages.  Even  where one of the 
coordinates is chemical composition (tIeesch, 1930, 
p. 341-342) or magnet ic  spin (Donnay et al., 1958), 
it  at  least serves to remind  us tha t  a coordinate m a y  
have any  value so long as the symmet ry  is satisfied. 
The space is not bounded by two lines (or planes),  

* Although Schubnikov in his book (1951) makes no men- 
tion of I-leesch (1930a), the latter had already described the 
122 antisymmetrie point groups and many of the corresponding 
space groups. 

* Isomorphic groups can be constructed with fewer than 
this maximum permitted number of dimensions of translation 
(Schubnikov, 1929). 
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Table  1. Some classes of  symmetry  groups in  3-D 
Invariance 

^ . Number 
Dimensional Symmetrical of groups* Other  no ta t ions  

0 1 1 Go ° (Niggli, 1959) 

0, 1 m 2 Eindimensionam Punktgruppen Gl° , G o' (Niggli, 1959) 

0, 1, 2 ram 5 G°l" (Niggli, 1950); eindimensionale 'zweifarbige' Kristallklassen (Nowacki, 1960, p. 97)t 

0, 1, 2, 3 mmm 16 Bordiirenmuster Klassen (Nowacki, 1960, p. 97)$ 

0, 1, 3 } oo/mm 31 Black and white point groups in 2-D (Mackay, 1957): G~' (Niggli, 1959) 0, 2, 3 

0, 2 c~m 10 Identity point groups in 2-D (Mackay, 1957); zweidimensionale Punktgruppen Ga~ 
(Niggli, 1959} 

O, 3 oo/m c~ 32 Point groups; identity point groups in 3-D (Mackay, 1957); dreidimensional~ Punkt- 
gruppen G o (Niggli, 1959) 

1 tm 2 1-D space groups (International Tables for X-ray Crystallography, 1952, p. 45), Reihen- 
gruppen G~ (Niggli, 1959) 

1, 2 tmm 7 Bortenornamente (Speiser, 1956, p. 8l); line groups in 2-D (International Tables for 
X-ray Crystallography, 1952, p. 56); odnomernye odnostoronnie beskonechnyi gruppy 
(Belov, 1956); Bandgruppen G~, G~' (Niggli, 1959); eindimensionale 'zweifarbige' 
Gruppen (Nowacki, 1960, p. 97t) 

1,2,3 tmmm 3l Streifenornamente (Speiser, 1956, p. 83); odnomernye drustoronnie beskonechnye 
gruppy (Belov, 1956); G~' (Niggli, 1959) 

1, 3 t oo/mm 75 Kettengruppen (Hermann, 1929); line groups in 3-D (International Tables for X-ray 
Crystallography, 1952, p. 56), Balkengruppen GaL G~' (Niggli, 1959) 

2 t oo m 17 Fli~chengruppen (Niggli, 1924); 2-D space groups (International Tables for X-ray 
Crystallography, 1952, p. 45); ploskie odnostoronnie gruppy (Belov & Tarkhova, 
1956) ; identity space groups in 2-D (Mackay, 1957) ; Fliichengruppen G~ (Niggli, 1959) 

2, 3 t co/mm 80 Netzgruppen ( iermann,  1929); zweidimensionale l~aumgruppen (Alexander & Her- 
mann, 1929); ploskie dvukhtsvetnie gruppy (Belov & Tarkhova, 1956; Belov, 1959); 
black and white space groups in 2-D (Mackay, 1957); Schichtgruppen Ga ~, G~' 
(Niggli, 1959) 

3 T (x~/m oo 230 Raumgruppen (Schoenflies) ; space groups; federovskie gruppy (Belov & Tarkhova, 1956) 
* Including trivial cases, and with the lattice 'crystallographic' restriction. 
t Nowacki counts 4 groups of class 0, 1, 2 and 6 groups of class 1, 2, leaving out mm (pi'i in his notation). 

Nowacki counts 9 groups of class 0, 1, 2, 3: leaving out the 'gray' groups l12/m, 12/ml, 2mm, and mmm, and also in three 
cases equating groups that  differ only in the orientation of symmetry elements relative to the line (See also Holser, 1960, p. 26.) 

as Speiser (1956, p. 83) and  Niggli  (1953, p. 63) imply .  
A 'b lack  and  whi te '  g roup  can a l s o  describe the  
re la t ions  of ' red  and  green '  in  the  same space, if the  
re la t ions  of black,  white ,  red, and  green along a single 
coord ina te  can be s t a t ed  or assumed.  

The  d imens iona l  descr ip t ion  has  the  d i s advan t age  
of requi r ing  an  add i t i ona l  d imens ion  for v i sua l iza t ion  
of the  re la t ions ,  a n d  th is  m a y  be t roub lesome if four  
or  more  d imens ions  are involved .  Classes of 4-D groups 
are  l i s ted  in  Table  2. 

Symmetry of Invariance 

I f  a p lane  is i n v a r i a n t  w i th  respect  to  a pa r t i cu la r  
s y m m e t r y  opera t ion ,  t h a t  is ano the r  way  of saying  
t h a t  t he  ope ra t ion  is a s y m m e t r y  e lement  of the  plane.  
This  ind ica tes  t h a t  t he  essent ia l  fea ture  of the  p lane  
in  i ts  r e l a t ion  to  s y m m e t r y  groups is no t  so m u c h  
t h a t  i t  has  two  dimensions ,  b u t  t h a t  i t  has  a ce r ta in  
s y m m e t r y .  The  s y m m e t r y  of an  inf in i te  p lane  is 
def ined  by  a con t inuous  group,  t h a t  is, one whose 
t r a n s l a t i o n a l  componen t s  are inf in i tes imal  (Schubni- 

key ,  1929; Heesch,  1930b). Schubn ikov ' s  n o t a t i o n  can 
be modif ied  to conform wi th  t h a t  of the  Internat ional  
Tables for  X - ray  Crystallography (1952) by  using the  
symbols  t, t and  T for con t inuous  ( infini tesimal)  t rans-  
la t ions  in I-D,  2-D, and  3-D, respect ively ,  and  oo for 
con t inuous  ( infini tesimal)  ro ta t ions .  The  symbol  for 
p lane  s y m m e t r y  in  2-D (class 2) is t hen  too2/m, in  
which  the  symbols  have  the  fol lowing s ignif icance:  

t is a set  of con t inuous  t r ans l a t ions  t h a t  cover  the  
plane,  

is a continuous rotation axis perpendicular to the 
plane  (which is mu l t i p l i ed  in f in i t e ly  by  t), 

2 is a 2-fold axis ly ing  in the  p lane  (which is mul t i -  
p l ied in f in i t e ly  in d i rec t ion  by  ~ ,  and  in f in i t e ly  
in  pos i t ion  by  t), 

m is a mir ror  p lane  pe rpend icu la r  to  2 (for every  one 
of the  double  in f in i ty  of 2 axes). 

P a r t  of the  symbol  is r e d u n d a n t ,  and  i t  m a y  therefore  
be shor tened  in the  usual  w a y  to  t ~ m .  

The  class of groups  wi th  respect  to  each of which  
a p lane  is i nva r i an t ,  is t he  class of all  subgroups  of 
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I 0 

m 0,1 I 

mm 0, l ,2 1,2 

mmm 0,I ,2,3 1,2,3 

o31mm O, 1,3 1,3 

oO/mm 0 ,2 ,3  2,3 

(;Om 0,2 2 

~ l m ~  

0,3 3 
Fig. 1. Schemat ic  represen ta t ion  of the  dimensions  invar ian t  for each of the  classes of g roups  up  to 3-D a r e  shown on 

the  right,  and on the  left  the  corresponding s y m m e t r y  for the  po in t  (0) classes. 
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Table 2. Some additional classes of  symmetry  groups in  4-D 
Invariance 

. ^ - Number 
Dimensional Symmetrical* of groupst 

0, 4 oo' oo" oo'" 122 ? 

0, l, 4 / (~" oo')m 122 
0, 3, 4 

O, 2, 4 (c~m)(~m)oo" 8 
-~(oom)(oom) 

O, 1, 2, 4 ! (oo m)mm 
0, 1, 3, 4 ~ = (oo' m)m ? 
0,2 ,3 ,4  

O. l, 2, 3, 4 mmmm ? 

1, 4 t(oo' oo')m ? 

1,3,41' 2, 4 } t(oo" m)m v 

l, 2, 3, 4 tmmmm ? 

2, 4 t(oom)((x~m) 95 
(=80+15) 

2, 3, 4 173 

3, 4 1651 

Other notations 

Identity point groups in 4-D (Mackay, 1957) 

Vierdimensionalen Punktgruppen des dreidimensionalen Raumes (Heesch, 1930); 
gruppy antisimmetrii konechnikh figur (Schuknikov, 1951); black and white point 
groups in 3-D (Mackay, 1957)t; G~' (Niggli, 1959) 

G o'' (Niggli, 1959) 

Tensor field black and white point groups in 2-D, n=  2 (Mackay, 1957) 

Tensor field black and white point groups in l-D, n = 3, in Mackay's (1957) nomenclature 

G~', O~" (Niggli, 1959) 

Tensor field black and white space groups in I-D, n = 3, in Mackay's (1957) nomenclature 

Gruppy tsvetnoi symmetrii (Belov & Tarkhova, 1956); colour space groups (Mackay, 
1957); G~" (Niggli, 1959) 

t(oo'm)m Tensor field black and white space groups in 2-D, n = 2 (Mackay, 1957) ; Ga 2' (Niggli, 1959) 

T(¢x/oo')m Vierdimensionalen Raumgruppen des dreidimensionalen Raumes (ieeseh, 1930); 
schubnikovskaie gruppy (Belov, Nerenova & Smirnova, 1955); black and white 
space groups in 3-D (Mackay, 1957); Ga 3' (Niggli, 1959) 

4 T oo'oo'¢x~'" ? Identity space groups in 4-D (Mackay, 1957) 

* See Appendix, and Table 3. 
t Including trivial cases and with the lattice 'crystallographic' restriction. 
~: Mackay lists 129 groups of class 0, 1, 4: perhaps this has been exchanged with class 0, 4 by a printer's error. 

Note added in proof: I now find that Hurley [(1951) Proc. Cambridge Phil. Soc. 47, 650] counted 222 groups of class 0,4; 
and Pabst [(1961) Amer. Cryst. Assn. Denver Meeting Abstracts] has colmted 179 groups of class l, 2, 3, 4. 

toom. Or, the crystal lographic plane groups of class 2 
in Table 1, are all the subgroups of toom t h a t  are 
crystal lographical ly permit ted.  The continuous trans- 
la t ion t gives any  2-D lat t ice as a suboperat ion;  and 
co gives any  ro ta t ional  operation. The symbol may  
be used to designate ei ther the symmet ry  of the plane 
itself, or the class of groups related to it, as determined 
by the context .  If  the  class includes non-crystallo- 
graphic groups, such as those involving continuous 
rotat ions,  the class will cover all symmetries of ag- 
gregates ( ' textures '  of Schubnikov (1955)). 

A fur ther  example may  clarify the nomenclature  of 
symmetry .  The 31 groups of class 1, 2, 3 t ha t  were 
discussed previously have the general supergroup 
symmet ry  t 2 / m 2 / m 2 / m  (=  t m m m ) ,  the m's referring to 
reflection along the line, along the plane perpendicular  
to the  line, and perpendicular to line and plane, 
respectively. The last  of these mirrors is in real space 
in a relief o rnament  or a twin, in 'color space' for a 
two-color strip ornament  or other  an t i symmetr ic  
figure. Analogously, both the second and third  mirrors 
can be in non-geometrical  space. But  none of these 
var ia t ions  affect the essential na ture  of the group, 
or their  classification by invarianee of dimensions or 
symmetry .  The corresponding 16 groups of class 
0, 1, 2, 3 have a symmet ry  m m m ,  as shown in Fig. 1. 

Column 2 of Table 1 lists the symmet ry  symbols 
for the various classes of crystal lographic groups up 

to 3-D, and the 'point  symmetries '  (0 classes) are 
i l lustrated in Fig. 1. This system can be extended to 
4-D, with perhaps somewhat  less usefulness, as shown 
in the second column of Table 2. Symmet ry  operations 
for 4-D, and their  notat ion,  are discussed in an 
Appendix. 

Five or more dimensions would be required for the  
more complex generalizations of space groups: if plus 
and minus (or black and white) are associated with 
n tensor components  (Mackay, 1957 ; equivalent  to the 
1 sign changes of Zamorzaev & Sokolov, 1957; Zamor- 
zaev, 1958) in N dimensions, each corresponds to a 
reflection along a new dimension. A to ta l  of N + n  
dimensions are then  required for the symmetr ical  
representat ion.  Note t ha t  the possible symmet ry  
operations in the new dimensions are not  exhausted 
by this reflection. In two added dimensions rotation 
is possible, equivalent  to the 'color groups' of Belov 
& Tarkhova  (1956) or the 'En ta r tungssymmet r ie '  of 
Niggli (1959). Among three added dimensions ro ta ry  
inversion ('colored', if you like) is possible, and so on. 
These rota t ions  are one point  symmetry ,  so the number  
of extra  dimensions required for representat ion can 
sometimes be reduced by one, by mapping the ro ta t ion  
element of dimensions n into a periodic lat t ice of 
dimensions n - 1  (Coxeter, 1947, p. 236). Thus the  
ro ta t ion  in the 'color' plane, of groups t (oom) (c~m) of 
Table 2, corresponds to the periodic t rans la t ion  compo- 
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n e n t  of t he  3-D screw axes used b y  Belov & T a r k h o v a  
(1956) in their de r iva t i on  of the  p lane  color groups.  

The  classif icat ion in t e rms  of s y m m e t r y  r a t h e r  t h a n  
in t e rms  of d imens ions  calls a t t e n t i o n  to  the  fact  t h a t  
'2-D po in t  groups in a p lane '  (d imensional  class 0, 2, 3) 
and  '3-D po in t  groups on a l ine '  (d imensional  class 
0, 1, 3) are rea l ly  the  same 31 po in t  g r o u p s - - b o t h  
geomet r i ca l  res t r ic t ions  have  the  same s y m m e t r y  
oo/m2/m.* Other  equiva lences  are found  in 4-D 
(Table 2). I f  t he  m a x i m u m  and  m i n i m u m  dimens ions  
of i nva r i ance  are m a n d  n, t hen  the  n u m b e r  of d imen-  
s ional  classes is 2~-n ,  bu t  this  n u m b e r  is reduced  b y  
the  symmet r i c a l  equivalences .  

I t  also suggests t h a t  any group can serve as a basis 
for a class of groups consis t ing of i ts  subgroups.  
The  o ther  po in t  groups  wi th  inf in i te  ro t a t i ons  are 
(Schubnikov,  1951, p. 78): ~ ,  ~/m, c~/2, c~oo. W i t h  a 
l i t t l e  s t r a in  these can also be visual ized in  t e rms  
analogous  to the  d imens iona l  classif icat ions;  for ex- 
ample  s y m m e t r y  oo corresponds to  a p lane  in  which  
ro t a t i ons  are p e r m i t t e d  in on ly  one sense, or a l ine 
a long which  a screw axis is p e r m i t t e d  in on ly  one sense 
All bu t  c¢/m are enan t iomorphous .  These classes of 
po in t  groups correspond to the  ' types '  of S c h u b n i k o v  
(1959). Analogous  groups  wi th  con t inuous  t r ans la t ions  
in 1-, 2-, 3-, or even  4-D m a y  be cons t ruc ted .  Of course 
a n y  c rys ta l lographic  group,  in  add i t i on  to the  four  
l is ted above  (1, m, 2mm, mmm), can also serve as the  
basis for a class of groups :  i ts  subgroups.  

* Note that these are not the same as the line groups of 
class 1, 2, 3 (symmetry 2/m2/m2/m) that were discussed above; 
the latter also number 31 only by coincidence. Also, of course, 
it is not analogously true that class 2, 3 and 1, 3 are the same; 
these have symmetries too/m2/m and too/m2/m, and number 
80 and 75 respectively. 
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S y m m e t r i  operations in 4 - D  

S y m m e t r y  opera t ions  and  groups  in  4-D have  been 
discussed by  Motzok  (1930), Coxeter  (1947) a n d  
H e r m a n n  (1949), b u t  u n f o r t u n a t e l y  wi th  dif fer ing 
v iewpoin t s  and  no ta t ions .  The  possible types  of sym- 
m e t r y  opera t ions  in  4-D are l i s ted  in Tab le  3. The  
opera t ions  t h a t  are new to  th is  d imens ion  are:  di- 
r o t a t i ons  (no t r a n s l a t i o n  involved) ,  and  ro t a ry -  
invers ion-gl ide  (or roto-ref lect ion-gl ide) .  The  corre- 
sponding  e lements  of s y m m e t r y  are a po in t  a n d  a line, 
respect ively ,  and  o ther  e lements  of s y m m e t r y  have  
one more  d imens ion  t h a n  the i r  cor responding  e lements  
in 3-D ( ro ta t ion  is a r o u n d  a plane,  ref lec t ion is t h r o u g h  
3-D 'cell ' ,  etc.). Coxeter  (1947, p. 75) t r ea t s  all  sym- 
m e t r y  in t e rms  of ref lect ions,  and  has  no n o t a t i o n  
ana logous  to those  of Tab le  3. 

Cont inuous  ro t a t i ons  a n d  r o t a r y  invers ions  are 
logical ly  des igna ted  by  co, and  c~', respect ive ly .  
Cont inuous  d i - ro ta t ions  are des igna ted  by  c~", follow- 
ing Niggli ' s  (1959) n o t a t i o n  for Entartungssymmetrie, 
a l t h o u g h  no t  all  d i - ro ta t ions  have  an  equ iva l en t  among  
the  Entartungssymmetrie opera t ions  of Niggli  (1959). 
H e r m a n n ' s  shor t  n o t a t i o n  (column 3 of Tab le  3) m i g h t  
have  been more  rigorous,  b u t  less recognizable .  

The  on ly  pub l i shed  n o t a t i o n  (Coxeter, 1934; 1947, 
p. 69) for 4-D groups  uses Schlafl i  symbols ,  which  
describe morpho logy  and  topology,  no t  jus t  the  sym- 
me t ry .  R a t h e r  t h a n  cons t ruc t  a comple te  sys tem 
analogous  to t h a t  of t he  International Tables for X-ray 
Crystallography, a brief  n o t a t i o n  suff icient  for Table  2 
was devised f rom the  fol lowing considera t ions .  The  
s y m m e t r y  of the  4-D hype r sphe re  can be a d e q u a t e l y  
represen ted  by  add ing  a con t inuous  d i - ro t a t i on  to the  

Tab le  3. Types of symmetry operations in 4-D 

Motzok, 1930 

Identitat 

Discontinuous operations 

Hermann, 1949 
Long (p. 141-144) Short (p. 145) 

1 1111 - -  

Corresponding antisymmetry 
(Belov, Neronova & 

Tarkhova, 1954; Niggli, 1959) 

1 
Reflexion P 2111 2000 1"---- m 

{L~ 2211 200 m" 
Rotation L a . . . .  311 . . . .  300 . . . .  3 . . . .  

P 2221 20 2" 
Roto-reflection T'~ . . . .  321 . . . .  30 . . . .  3", . . .  

L2. 2222 2 T' 
Di-rotation L6. 2 . . . .  322 . . . .  3 . . . .  3", . . .  

L3. 3 . . . .  33 . . . .  33 . . . .  3", . . .  (in part) 

Translation T - -  - -  

Gli-reflexion 

Gli-rotation 

Gli-roto-reflexion 

21111 21111 
G 211111 211111 

2111111 2111111 

{ { 22111 22111 } 
V2 22111 221111 
V a . . . .  3111 . . . .  3111, . . .  

G2 22211 22211 
G 6 6211 , 6211 , x6, . . . . . . . .  . 

a ~ m "  

n 

d 

21 
31, •.. 
21"=g" 
3 1 " ,  . . . 

Continuous 
Operations 
(this paper) 

(1) 

(m) 

O0 t ~': ( :x) /m 

T 
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symmet ry  of a 3-D sphere, thus :  oo/moooo", or 
oo' oo' oo". This has as subgroups all the irreducible 
4-D point  groups, including those isomorphous with 
4-D space groups, enumera ted  by  Coxeter (1934, 
p. 601). No doubt  the (unlisted) reducible groups, 
which m a y  be formed as a product  of two or more 
groups of lower dimension, are also subgroups of 
oo' oo' oo". I f  other dimensional invariances are added, 
then such products  are sufficient to describe the 
resulting symmet ry ;  a symbol for this kind of sym- 
me t ry  is composed by  bracket ing those par t s  of the 
symbol t h a t  refer to one of the mult iplying subgroups. 
For  example,  if the  dimensional invariance is 2, 4, 
as in plane color groups, there is freedom within a 
2-D plane, and  also rota t ional ly  within the  2-D 
'color plane'  t h a t  is completely perpendicular  in 4-D. 
The s y m m e t r y  group is a product  of the s y m m e t r y  
groups representing two planes, t h a t  is, (oom)(oom). 
Di-rotat ion is present,  as when you simultaneously 
ro ta te  g/2 and change from red to green in Belov & 
Tarkhova ' s  (1956, p. 10) group 'P4~', but  is not  
essential to a description of the symmet ry ,  t ha t  is 
(oom) (~m)~o" = (~m)(oom). 

I would like to express appreciat ion for helpful 
discussion and criticism by  Gabrielle Donnay,  Z .V .  
J izba,  J a n  Korr inga,  and Adolph Pabst .  
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A n i s o t r o p i c  S t r u c t u r e  F a c t o r  C a l c u l a t i o n s . *  

BY D. R. FITZWATER 
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(Received 21 July 1960 and in revised.form 12 January 1961) 

A general form of the anisotropic structure factor which is suitable for evaluation in any space group 
is presented. A simple scheme for specifying the space group symmetry avoids the use of special 
~patches'. The suggested form in the case of general and most special positions reduces to a form 
which permits substantial savings in the time required to form the function arguments and is well 
adapted to computation of structure factors and derivatives on high speed digital computers. 

Structure factor for general position 

As was demons t ra ted  by  Levy (1956), the  fl~j in the 
expression for the  anisotropic t empera ture  factor,  

* Contribution No. 904. Work was performed in the Ames 
Laboratory of the U.S. Atomic Energy Commission. 

3 3 
exp (--  .~' .~  ~i~hih~), 

i=l j=l 

for symmetr ica l ly  related positions, t ransform as do 
the quadrat ic  products  of atomic coordinates, while 
ignoring t ransla t ional  components. 


