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Classification of Symmetry Groups
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California Research Corporation, La Habra, California, U.S.A.
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Point groups and space groups in 3-D are two classes of symmetry groups that have proved most
useful in crystallography. Recently other sorts of groups have been described involving a change
of ‘side’, sign (antisymmetry), or color; and some of these have already been applied to problems
of twinning and magnetic structures. A uniform classification of these various groups should help
in visualizing the relations among them and in working out new applications.

If all variables are treated geometrically, including antisymmetry, symmetry groups may be
classed according to the dimensions of space that are invariant under their operations. Thus the
80 ‘antisymmetry groups in a plane’ have 2-D and 3-D spaces invariant. The group is ‘in’ the
highest dimensional space of invariance, and translations are allowed only in the lowest dimensional
space. But spaces of intermediate dimensions may also be invariant: the 31 ‘Streifenornamente’ have
1, 2, 3 spaces invariant. Alternatively these classes may be described by the symmetry of the in-
variant space, using the continuous translations and rotations. Thus the class of groups in 2, 3 space

are all the crystallographic subgroups of foo/mm, and class 1, 2, 3 are all subgroups of tmmm.

All such classes through 4-D are tabulated.

Introduction

After the classical descriptions of crystallographic
lattices and space groups in the nineteenth century,
it was generally considered that everything had been
said on the subject. There was a revival of interest
about 1930 when several papers appeared in the
Zeitschrift fiir Kristallographie describing line groups,
plane groups, three-dimensional groups in four dimen-
sions, continuous groups, and so on. These esoteric
matters were soon forgotten, but ever since the ap-
pearance in 1951 of Schubnikov’s book on anti-
symmetric point groups, the field has blossomed.
Antisymmetry is a beautifully simple idea that has
moreover proved useful in solving magnetic structures
and other problems. Symmetry groups are now gener-
ally classified in terms of antisymmetry or extensions

of that idea (Zamorzaev & Sokolov, 1957; Mackay,
1957; Niggli, 1959; Nowacki, 1960). It is the single
purpose of this paper to recall and develop another
aspect of symmetry groups that can serve as a basis
of classification. I refer to the space—point, plane, line,
cell, or some combination of them—that is invariant
under all operations of the symmetry groups in a class.
The dimensions of the space, or its general symmetry,
is a description of the class of groups. With this
alternate viewpoint, groups are more easily described
for some purposes.

Antisymmetry and dimensions

I take as point of departure the paper by Heesch
(1930a), ‘Uber die vierdimensionalen Gruppen des
dreidimensionalen Raumes’. These groups are in fact
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the antisymmetric or black and white groups in 3-D,
now generally known as the Schubnikov groups.
A point can be described in 3-D by the coordinates
x, ¥, z; then whereas Heesch gives it values of plus or
minus w in a fourth dimension, Schubnikov and Belov
label it black or white.* Antisymmetry is equivalent
to a bivalued function in an added dimension. How
far, and to what purpose, can this aspect of groups
be developed ?

Dimensional classification of symmetry groups

The dimensional relations of symmetry groups are most
easily appreciated in few dimensions. The 80 anti-
symmetric plane groups (Belov, Nerenova & Smir-
nova, 1955; Mackay, 1957, p. 544) can also be called
2-D (plane)groups in three dimensions (Heesch, 1930q,
p. 326). Niggli (1959, p. 300) lists them both ways:
(1) as 80 symmetry groups with 2-D translation in
3-D space (Schichtgruppen G3) and (2) as 46 anti-
symmetry groups with 2-D translation in 2-D space
(G%") (plus 17 ‘black’ or one-sided groups, and 17
‘gray’ or mirrored groups, equals 80). He apparently
does not think it necessary to point out this equiv-
alence (or two other similar equivalences) that occur
in his table.

Tt is important to remember that points anywhere
in 3-D space, however far they may be from the
reference plane, can be related by these 80 2-D groups.
The reference plane imposes only two restrictions:
(1) it is the locus of all translations, and (2) it is in-
variant under all rotations and reflections. The first
of these is used by Niggli (1959) as a basis for his
classification. But there can be more than one class
of groups with the same translational elements.
Consider the groups with translation along only a
single reference line. If points only on the line are
allowed, there are two such groups (International
Tables for X-ray Crystallography, Vol.I, p.45). If
points are also allowed in a plane (that contains the
line), it is well known that there are 7 such groups
(International Tables for X -ray Crystallography, Vol. I,
p- 56). Now if we retain the reference line and plane,
and allow points anywhere in 3-D space, 31 symmetry
groups are possible. Speiser first described these as
‘Streifenornamente’, in terms of the symmetry of a
strip ornament that has relief (Speiser, 1956, p. 81-86).
On the other hand, these are also antisymmetry groups
with 1.D translation in 2-D space (Belov, 1956, p. 475;
Niggli, 1959: 17G}’ groups, plus 7 ‘black’ and 7 ‘gray’
groups equals 31). But when we consider the point
groups (I count 16) that are isomorphous with these
31 groups, we find they have no place in the classifica-
tions of Niggli or Mackay (1957). Similar troubles will
be found with the groups involving 2-D translations.

* Although Schubnikov in his book (1951) makes no men-
tion of Heesch (1930a), the latter had already described the
122 antisymmetric point groups and many of the corresponding
space groups.
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However, these classes of groups are distinguished
in a straightforward manner by the second restriction
that was mentioned above, that is, in terms of the line
or plane that is invariant under rotations and reflec-
tions. By invariance I mean that any symmetry
operation of the group acts on the line or plane to give
it back unchanged. Actually both restrictions can be
stated in these terms, when you realize that if a plane
is the locus of all translations, it is invariant with such
translations. So both restrictions can be combined by
saying that the plane or line is invariant under all
symmetry operations of that class of groups. Then if
several dimensional descriptions are involved, such as
a plane and a line in the 7 groups mentioned above,
translation is necessarily restricted to the lowest
dimension of invariance (1-D). Analogously, point
groups have zero as their lowest dimension. Further-
more, if a group is ‘in’ 2-D space, 2-D space must be
invariant with respect to that group. This is the
highest dimension of invariance. From this viewpoint
all the classes of groups mentioned in the preceding
paragraph may be designated in terms of their
dimensional invariance: 80 groups of class 2, 3; 2
groups of class 1; 7 groups of class 1, 2; 31 groups of
class 1,2, 3; and 16 groups of class 0, 1, 2, 3.

The classes of groups up to 3-D are listed in Table 1
according to this ‘dimensional’ description. In the
second and third columns of Fig. 1 these dimensions
are represented graphically. All the dimensions listed
are invariant with respect to any group in that class;
the group lies in the space of highest dimension,
and has translation along the lowest dimension.* If
desired, the list of dimensions may be considered a
symbol of the class of groups. Please understand that
Fig. 1 is schematic, and while the boundaries of each
space have been drawn to conform with its symmetry
(see below), the space in which symmetry may operate
actually extends infinitely in one or more directions.
The equivalence of classes 0, 1,3 and 0, 2,3 will be
discussed in the following section.

This sort of description has perhaps some advantage
of being mathematically consistent and explicit, in
recognizing that all coordinates of a point can be
expressed geometrically. Any of these dimensions may
or may not correspond to dimensions of real space.
Where all the dimensions do correspond to real space,
as in the application to twinning theory, of groups of
kinds 2, 3, and 0, 2, 3 (Holser, 1957) and 1, 2, 3, and
0,1, 2,3 (Holser, 1960), the full dimensional descrip-
tion has obvious advantages. Even where one of the
coordinates is chemical composition (Heesch, 1930,
p. 341-342) or magnetic spin (Donnay et al., 1958),
it at least serves to remind us that a coordinate may
have any value so long as the symmetry is satisfied.
The space is not bounded by two lines (or planes),

* Isomorphic groups can be constructed with fewer than
this maximum permitted number of dimensions of translation
(Schubnikov, 1929).
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G’ (Niggli, 1950); eindimensionale ‘zweifarbige’ Kristallklassen (Nowacki, 1960, p. 97)1

Black and white point groups in 2-D (Mackay, 1957): G}’ (Niggli, 1959)

Identity point groups in 2-D (Mackay, 1957); zweidimensionale Punktgruppen G
Point groups; identity point groups in 3-D (Mackay, 1957); dreidimensionals Punkt-
1-D space groups (International Tables for X-ray Crystallography, 1952, p. 45), Reihen-

Bortenornamente (Speiser, 1956, p. 81); line groups in 2-D (Infernational Tables for

X.ray Crystallography, 1952, p. 56); odnomernye odnostoronnie beskonechnyi gruppy
(Belov, 1956); Bandgruppen G4, G}’ (Niggli, 1959); eindimensionale ‘zweifarbige’

Streifenornamente (Speiser, 1956, p.83); odnomernye drustoronnie beskonechnye

Kettengruppen (Hermann, 1929); line groups in 3-D (International Tables for X-ray

Crystallography, 1952, p. 56), Balkengruppen Gi. G}’ (Niggli, 1959)

Flachengruppen (Niggli, 1924); 2-D space groups (International Tables for X-ray

Crystallography, 1952, p.45); ploskie odnostoronnie gruppy (Belov & Tarkhova,
1956); identity space groups in 2-D (Mackay, 1957); Flachengruppen G2 (Niggli, 1959)

Netzgruppen (Hermann, 1929); zweidimensionale Raumgruppen (Alexander & Her-

mann, 1929); ploskie dvukhtsvetnie gruppy (Belov & Tarkhova, 1956; Belov, 1959);
black and white space groups in 2-D (Mackay, 1957); Schichtgruppen G%, Gy
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Table 1. Some classes of symmetry groups in 3-D
Invariance
Number
Dimensional Symmetrical of groups*
0 1 1 GY (Niggli, 1959)
0,1 m 2 Eindimensionale Punktgruppen G9, G}’ (Niggli, 1959)
0,1,2 mm 5
0,1,2,3 mmm 16 Bordiirenmuster Klassen (Nowacki, 1960, p. 97)}
0,1,3
0,23 } oo/mm 31
0,2 com 10
(Niggli, 1959)
0,3 oo/m oo 32
gruppen G3 (Niggli, 1959)
1 tm 2
gruppen G1 (Niggli, 1959)
1,2 tmm 7
Gruppen (Nowacki, 1960, p. 971)
1,2,3 tmmm 31
gruppy (Belov, 1956); G}’ (Niggli, 1959)
1,3 t co/mm 75
2 t com 17
2,3 t oo/mm 80
(Niggli, 1959)
3 T oojm oo 230

Raumgruppen (Schoenflies); space groups; federovskie gruppy (Belov & Tarkhova, 1956)

* Including trivial cases, and with the lattice ‘crystallographic’ restriction.

T Nowacki counts 4 groups of class 0, 1, 2 and 6 groups of class 1, 2, leaving out mm (pi’i in his notation).

I Nowacki counts 9 groups of class 0, 1, 2, 3: leaving out the ‘gray’ groups 112/m, 12/m1, 2mm, and mmm, and also in three
cases equating groups that differ only in the orientation of symmetry elements relative to the line (See also Holser, 1960, p. 26.)

as Speiser (1956, p. 83) and Niggli (1953, p. 63) imply.
A ‘black and white’ group can also .describe the
relations of ‘red and green’ in the same space, if the
relations of black, white, red, and green along a single
coordinate can be stated or assumed.

The dimensional description has the disadvantage
of requiring an additional dimension for visualization
of the relations, and this may be troublesome if four
or more dimensions are involved. Classes of 4-D groups
are listed in Table 2.

Symmetry of Invariance

If a plane is invariant with respect to a particular
symmetry operation, that is another way of saying
that the operation is a symmetry element of the plane.
This indicates that the essential feature of the plane
in its relation to symmetry groups is not so much
that it has two dimensions, but that it has a certain
symmetry. The symmetry of an infinite plane is
defined by a continuous group, that is, one whose
translational components are infinitesimal (Schubni-

kov, 1929; Heesch, 19305). Schubnikov’s notation can
be modified to conform with that of the International
Tables for X-ray Crystallography (1952) by using the
symbols t, ¢ and T for continuous (infinitesimal) trans-
lations in 1-D, 2-D, and 3-D, respectively, and oo for
continuous (infinitesimal) rotations. The symbol for
plane symmetry in 2-D (class 2) is then tco2/m, in
which the symbols have the following significance:

¢ is a set of continuous translations that cover the
plane,

0o 18 & continuous rotation axis perpendicular to the
plane (which is multiplied infinitely by ),

2 is a 2-fold axis lying in the plane (which is multi-
plied infinitely in direction by oo, and infinitely
in position by ),

m is a mirror plane perpendicular to 2 (for every one
of the double infinity of 2 axes).

Part of the symbol is redundant, and it may therefore
be shortened in the usual way to toom.

The class of groups with respect to each of which
a plane is invariant, is the class of all subgroups of
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Table 2. Some additional classes of symmetry groups in 4-D
Invariance
Number
Dimensional Symmetrical* of groupst Other notations
0, 4 o0’ 0o’ o0’ 12272 Identity point groups in 4.D (Mackay, 1957)
0.1 4 (00" o0’ )m 122 Vierdimensionalen Punktgruppen des dreidimensionalen Raumes (Heesch, 1930);
0’ 3’ 4 gruppy antisimmetrii konechnikh figur (Schuknikov, 1951); black and white point
* groups in 3-D (Mackay, 1957)t; G’ (Niggli, 1959)
0,2,4  (com)(com)oo’ 8 GY' (Niggli, 1959)
=(com)(com)
0,1,2,4 (o0 m)mm
0,1,8,4 S ? Tensor field black and white point groups in 2-D, n=2 (Mackay, 1957)
0,284 | =(Tmm
0.1,2,3,4 mmmm ? Tensor field black and white point groups in 1-D, n= 3, in Mackay’s (1957) nomenclature
1, 4 (oo’ c0’)m ?
1,2, 4 , AL (Nl
L2 } t(co” mym T Gy, G (Niggli, 1959)
1,2,3,4 tmmmm ? Tensor field black and white space groups in 1-D, n=3, in Mackay’s (1957) nomenclature
2,4 t(com){com) 95 Gruppy tsvetnoi symmetrii (Belov & Tarkhova, 1956); colour space groups (Mackay,
(=80+15) 1957); G%' (Niggli, 1959)
2,3,4 t(oco’'m)m 173 Tensor field black and white space groups in 2-D, n=2 (Mackay, 1957); G%' (Niggli, 1959)
3,4 T(o0’ c0’)m 1651 Vierdimensionalen Raumgruppen des dreidimensionalen Raumes (Heesch, 1930);
schubnikovskaie gruppy (Belov, Nerenova & Smirnova, 1955); black and white
space groups in 3-D (Mackay, 1957); G} (Niggli, 1959)
4 T o0’ 00’00’ ? Identity space groups in 4-D (Mackay, 1957)

* See Appendix, and Table 3.

t Including trivial cases and with the lattice ‘crystallographic’ restriction.
1 Mackay lists 129 groups of class 0, 1, 4: perhaps this has been exchanged with class 0, 4 by a printer’s error.

Note added in proof: I now find that Hurley [(1951) Proc. Cambridge Phil. Soc. 47, 650] counted 222 groups of class 0,4;
and Pabst [(1961) Amer. Cryst. Assn. Denver Meeting Abstracts] has counted 179 groups of class 1, 2, 3, 4.

toom. Or, the crystallographic plane groups of class 2
in Table 1, are all the subgroups of fcom that are
crystallographically permitted. The continuous trans-
lation ¢ gives any 2-D lattice as a suboperation; and
o gives any rotational operation. The symbol may
be used to designate either the symmetry of the plane
itself, or the class of groups related to it, as determined
by the context. If the class includes non-crystallo-
graphic groups, such as those involving continuous
rotations, the class will cover all symmetries of ag-
gregates (‘textures’ of Schubnikov (1955)).

A further example may clarify the nomenclature of
symmetry. The 31 groups of class 1,2, 3 that were
discussed previously have the general supergroup
symmetry t2/m2/m2/m (=tmmm), the m’s referring to
reflection along the line, along the plane perpendicular
to the line, and perpendicular to line and plane,
respectively. The last of these mirrors is in real space
in a relief ornament or a twin, in ‘color space’ for a
two-color strip ornament or other antisymmetric
figure. Analogously, both the second and third mirrors
can be in non-geometrical space. But none of these
variations affect the essential nature of the group,
or their classification by invariance of dimensions or
symmetry. The corresponding 16 groups of class
0,1, 2,3 have a symmetry mmm, as shown in Fig. 1.

Column 2 of Table 1 lists the symmetry symbols
for the various classes of crystallographic groups up

to 3-D, and the ‘point symmetries’ (0 classes) are
illustrated in Fig. 1. This system can be extended to
4-D, with perhaps somewhat less usefulness, as shown
in the second column of Table 2. Symmetry operations
for 4-D, and their notation, are discussed in an
Appendix.

Five or more dimensions would be required for the
more complex generalizations of space groups: if plus
and minus (or black and white) are associated with
n tensor components (Mackay, 1957 ; equivalent to the
! sign changes of Zamorzaev & Sokolov, 1957; Zamor-
zaev, 1958) in N dimensions, each corresponds to a
reflection along a new dimension. A total of N+n
dimensions are then required for the symmetrical
representation. Note that the possible symmetry
operations in the new dimensions are not exhausted
by this reflection. In two added dimensions rotation
is possible, equivalent to the ‘color groups’ of Belov
& Tarkhova (1956) or the ‘Entartungssymmetrie’ of
Niggli (1959). Among three added dimensions rotary
inversion (‘colored’, if you like) is possible, and so on.
These rotations are one point symmetry, so the number
of extra dimensions required for representation can
sometimes be reduced by one, by mapping the rotation
element of dimensions n into a periodic lattice of
dimensions n—1 (Coxeter, 1947, p- 236). Thus the
rotation in the ‘color’ plane, of groups ¢ (com) (com) of
Table 2, corresponds to the periodic translation compo-
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nent of the 3-D screw axes used by Belov & Tarkhova
(1956) in their derivation of the plane color groups.

The classification in terms of symmetry rather than
in terms of dimensions calls attention to the fact that
‘2-D point groups in a plane’ (dimensional class 0, 2, 3)
and ‘3-D point groups on a line’ (dimensional class
0,1,3) are really the same 31 point groups—both
geometrical restrictions have the same symmetry
oco/m2/m.* Other equivalences are found in 4-D
(Table 2). If the maximum and minimum dimensions
of invariance are m and 7, then the number of dimen-
sional classes is 2m-~, but this number is reduced by
the symmetrical equivalences.

It also suggests that any group can serve as a basis
for a class of groups consisting of its subgroups.
The other point groups with infinite rotations are
(Schubnikov, 1951, p. 78): oo, co/m, 00/2, coco. With a
little strain these can also be visualized in terms
analogous to the dimensional classifications; for ex-
ample symmetry oo corresponds to a plane in which
rotations are permitted in only one sense, or a line
along which a screw axis is permitted in only one sense
All but oo/m are enantiomorphous. These classes of
point groups correspond to the ‘types’ of Schubnikov
(1959). Analogous groups with continuous translations
in 1-, 2-, 3-, or even 4-D may be constructed. Of course
any crystallographic group, in addition to the four
listed above (1, m, 2mm, mmm), can also serve as the
basis for a class of groups: its subgroups.

* Note that these are not the same as the line groups of
class 1, 2, 3 (symmetry 2/m2/m2/m) that were discussed above;
the latter also number 31 only by coincidence. Also, of course,
it is not. analogously true that class 2, 3 and 1, 3 are the same;
these have symmetries too /m2/m and t oo [m2[m, and number
80 and 75 respectively.

APPENDIX
Symmetri operations in 4-D

Symmetry operations and groups in 4-D have been
discussed by Motzok (1930), Coxeter (1947) and
Hermann (1949), but unfortunately with differing
viewpoints and notations. The possible types of sym-
metry operations in 4-D are listed in Table 3. The
operations that are new to this dimension are: di-
rotations (no translation involved), and rotary-
inversion-glide (or roto-reflection-glide). The corre-
sponding elements of symmetry are a point and a line,
respectively, and other elements of symmetry have
one more dimension than their corresponding elements
in 3-D (rotation is around a plane, reflection is through
3-D ‘cell’, etc.). Coxeter (1947, p. 75) treats all sym-
metry in terms of reflections, and has no notation
analogous to those of Table 3.

Continuous rotations and rotary inversions are
logically designated by oo, and co’, respectively.
Continuous di-rotations are designated by co”’, follow-
ing Niggli’s (1959) notation for Entartungssymmetrie,
although not all di-rotations have an equivalent among
the Entartungssymmetrie operations of Niggli (1959).
Hermann’s short notation (column 3 of Table 3) might
have been more rigorous, but less recognizable.

The only published notation (Coxeter, 1934; 1947,
p- 69) for 4-D groups uses Schlafli symbols, which
describe morphology and topology, not just the sym-
metry. Rather than construct a complete system
analogous to that of the International Tables for X-ray
Crystallography, a brief notation sufficient for Table 2
was devised from the following considerations. The
symmetry of the 4-D hypersphere can be adequately
represented by adding a continuous di-rotation to the

Table 3. Types of symmetry operations in 4-D

Discontinuous operations

Corresponding antisymmetry Continuous

Hermann, 1949 (Belov, Neronova & Operations

Motzok, 1930

Long (p. 141-144)

Short (p. 145) Tarkhova, 1954; Niggli, 1959)  (this paper)

Identitat 1 1111 — 1 (1)
Reflexion P 2111 2000 1'=m (m)
. L, 2211 200 m’
Rotation { L, 311, ... Bogs - - - 3 .. oo
. P 2221 2 2
Roto-reflection { Ps, 321, ... 30, - .- 3, .. 00’ = cojm
Ly, 2222 2 _T
Di-rotation L., 322, ... 3, .. 3, ...
Ly, 33, ... 33, . 3", ... (in part) oo’
Translation T — — T
21,11 21,11 a=m’
Gli-reflexion G 21,1,1 21;1,1 n
21,11, 21,11, d
. . - 221,1 221,1 5,
Gli-rotation 2 22,1 221,1,
Vs, 3L, ... 311, .. 3p e
. . Go 2221, 2221, 2,/ =g’
Gli-roto-reflexion { as, 62l,, ... 621,, EXA
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symmetry of a 3-D sphere, thus: oo/m coo0”, or
oo’ o0’ co’’. This has as subgroups all the irreducible
4-D point groups, including those isomorphous with
4.D space groups, enumerated by Coxeter (1934,
p.- 601). No doubt the (unlisted) reducible groups,
which may be formed as a product of two or more
groups of lower dimension, are also subgroups of
0o’ 0o’ 00”’, If other dimensional invariances are added,
then such products are sufficient to describe the
resulting symmetry; a symbol for this kind of sym-
metry is composed by bracketing those parts of the
symbol that refer to one of the multiplying subgroups.
For example, if the dimensional invariance is 2,4,
as in plane color groups, there is freedom within a
2-D plane, and also rotationally within the 2-D
‘color plane’ that is completely perpendicular in 4-D.
The symmetry group is a product of the symmetry
groups representing two planes, that is, (com)(com).
Di-rotation is present, as when you simultaneously
rotate 7/2 and change from red to green in Belov &
Tarkhova’s (1956, p.10) group ‘P4,’, but is not

essential to a description of the symmetry, that is

(0om) (com )oo”’ = (oom) (com).

I would like to express appreciation for helpful
discussion and criticism by Gabrielle Donnay, Z. V.
Jizba, Jan Korringa, and Adolph Pabst.
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Anisotropic Structure Factor Calculations.*

By D. R. FitzwAaTER
Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa, U.S.A.

(Recetved 21 July 1960 and in revised form 12 January 1961)

A general form of the anisotropic structure factor which is suitable for evaluation in any space group
is presented. A simple scheme for specifying the space group symmetry avoids the use of special
‘patches’. The suggested form in the case of general and most special positions reduces to a form
which permits substantial savings in the time required to form the function arguments and is well
adapted to computation of structure factors and derivatives on high speed digital computers.

Structure factor for general position
As was demonstrated by Levy (1956), the B in the
expression for the anisotropic temperature factor,

* Contribution No. 904. Work was performed in the Ames
Laboratory of the U.S. Atomic Energy Commission.

3 3
exp (— 3 X Bihihy),
i=1j=1
for symmetrically related positions, transform as do
the quadratic products of atomic coordinates, while
ignoring translational components.



